Qualitative Simulation of Photon Transport in Free Space Based on Monte Carlo Method and Its Parallel Implementation
نویسندگان
چکیده
During the past decade, Monte Carlo method has obtained wide applications in optical imaging to simulate photon transport process inside tissues. However, this method has not been effectively extended to the simulation of free-space photon transport at present. In this paper, a uniform framework for noncontact optical imaging is proposed based on Monte Carlo method, which consists of the simulation of photon transport both in tissues and in free space. Specifically, the simplification theory of lens system is utilized to model the camera lens equipped in the optical imaging system, and Monte Carlo method is employed to describe the energy transformation from the tissue surface to the CCD camera. Also, the focusing effect of camera lens is considered to establish the relationship of corresponding points between tissue surface and CCD camera. Furthermore, a parallel version of the framework is realized, making the simulation much more convenient and effective. The feasibility of the uniform framework and the effectiveness of the parallel version are demonstrated with a cylindrical phantom based on real experimental results.
منابع مشابه
Assessment of Effect Technical Directional Bremsstrahlung Splitting (DBS) on Spectra and Parameters of Simulation with Monte carlo Method BEAMnrc Code (Study Monte Carlo)
Introduction: Previous studies have shown that a Monte Carlo method for the transportations photon beam in medical linear accelerator is a good way. Strip of simulation can be used to measure the dose distribution in phantoms and patients' body. EGSnrc Code is the only code written for use in the field of radiation therapy that has many subset codes that BEAMnrc code is an impo...
متن کاملStudy on Photon Transport Problem Based on the Platform of Molecular Optical Simulation Environment
As an important molecular imaging modality, optical imaging has attracted increasing attention in the recent years. Since the physical experiment is usually complicated and expensive, research methods based on simulation platforms have obtained extensive attention. We developed a simulation platform named Molecular Optical Simulation Environment (MOSE) to simulate photon transport in both biolo...
متن کاملThe Impact of Nano-Sized Gold Particles on the Target Dose Enhancement Based on Photon Beams Using by Monte Carlo Method
Objective(s): In this study we evaluate the impact of the different aspects of Gold Nano-Particles (GNPs) on the target absorptive Dose Enhancement Factor (DEF) during external targeted radiotherapy with photon beams ranging from kilovolt to megavolt energies using Monte Carlo simulation. Methods: We have simulated the interaction of photon beams wi...
متن کاملEvaluation of Electron Contamination in Cancer Treatment with Megavoltage Photon Beams: Monte Carlo Study
Background: Megavoltage beams used in radiotherapy are contaminated with secondary electrons. Different parts of linac head and air above patient act as a source of this contamination. This contamination can increase damage to skin and subcutaneous tissue during radiotherapy. Monte Carlo simulation is an accurate method for dose calculation in medical dosimetry and has an important role in opt...
متن کاملComparison of ScintSim1 and Geant4 Monte Carlo simulation codes for optical photon transport in thick segmented scintillator arrays
Introduction: Arrays of segmented scintillation crystals are useful in megavoltage x-ray imaging detectors for image-guided radiotherapy. Most previous theoretical studies on these detectors have modelled only ionizing-radiation transport. Scintillation light also affects detector performance. ScintSim1, our previously reported optical Monte Carlo code for such detector...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2010 شماره
صفحات -
تاریخ انتشار 2010